
4 CROSSTALK The Journal of Defense Software Engineering March 2007

Software Security

More and more organizations want
assurance that the software products

they acquire and develop are free of
known types of security weaknesses.
High-quality tools and services for finding
security weaknesses in code are new. The
question of which tool/service is appro-
priate/better for a particular job is hard to
answer given the lack of structure and
definition in the software product assess-
ment industry.

There are several ongoing efforts to
begin to resolve some of these shortcom-
ings, including the Department of
Homeland Security (DHS) National Cyber
Security Division (NCSD)-sponsored
Software Assurance Metrics and Tool
Evaluation (SAMATE) project [1] led by
the National Institute of Standards and
Technology (NIST), the Object Manage-
ment Group (OMG) Software Assurance
(SwA) Special Interest Group (SIG) [2],
and the Department of Defense (DoD)-
sponsored Code Assessment Methodol-
ogy Project, which is part of the
Protection of Vital Data effort [3] con-
ducted by Concurrent Technologies
Corporation, among others. While these
efforts are well placed, timely in their
objectives, and will surely yield high value
in the end, they require a common descrip-
tion of the underlying security weaknesses
that can lead to exploitable vulnerabilities
in the software that they are targeted to
resolve. Without such a common descrip-
tion, these efforts, as well as the DoD’s
own software and systems assurance
efforts, cannot move forward in a mean-
ingful fashion or be aligned and integrated
with each other to provide the needed
answers to secure our networked systems.

A Different Approach
Past attempts at developing this kind of
effort have been limited by a very narrow
technical domain focus or have largely
focused on high-level theories, tax-
onomies, or schemes that do not reach the
level of detail or variety of security issues

that are found in today’s products. As an
alternate approach, under sponsorship of
DHS NCSD, and as part of MITRE’s par-
ticipation in the DHS-sponsored NIST
SAMATE effort, MITRE investigated the
possibility of leveraging the Common
Vulnerabilities and Exposures (CVE) ini-
tiative’s experience in analyzing more than
20,000 real-world vulnerabilities reported
and discussed by industry and academia.

As part of the creation of the CVE list
[4] that is used as the source of vulnera-
bilities for the National Vulnerability
Database [5], MITRE’s CVE initiative
during the last six years has developed a
preliminary classification and categoriza-
tion of vulnerabilities, attacks, faults, and
other concepts that can be used to help
define this arena. However, the original
groupings used in the development of
CVE, while sufficient for that task, were
too rough to be used to identify and cate-
gorize the functionality found within the
offerings of the code security assessment
industry. For example, in order to support
the development of CVE content, it is
sufficient to separate the reported vulner-
abilities in products into working cate-
gories such as weak/bad authentication,
buffer overflow, cryptographic error,
denial of service, directory traversal,
information leak, or cross-site scripting.
For assessing code, however, this granular-
ity of classification groupings was too
large and indefinite. Of the categories list-
ed, for example, cross-site scripting actual-
ly has eight different types of issues that
need to be addressed or looked for when
assessing code; buffer overflow covered
10 different code constructs to look for.

So, to support use in code assessment,
additional fidelity and succinctness was
needed as well as additional details and
descriptive information for each of the dif-
ferent categories such as effects, behaviors,
and the implementation details. The pre-
liminary classification and categorization
work used in the development of CVE was
revised to address the types of issues dis-

cussed above and the result was called the
Preliminary List of Vulnerability Examples
for Researchers (PLOVER) [6]. PLOVER
was a document that listed more than 1,500
diverse, real-world examples of vulnerabil-
ities, identified by their CVE name. The
vulnerabilities are organized within a
detailed conceptual framework that enu-
merates the 300 individual types of weak-
nesses that cause the vulnerabilities. The
weaknesses were simply grouped within 28
higher-level categories with a large number
of real-world vulnerability examples for
each type of weakness. PLOVER repre-
sents the first cut of a truly bottom-up
effort to take real-world observed,
exploitable vulnerabilities that do exist in
code, to abstract them and group them into
common classes representing more general
potential weaknesses that could lead to
exploitable vulnerabilities in code, and
then, finally to organize them in an appro-
priate relative structure so as to make them
accessible and useful to a diverse set of
audiences for a diverse set of purposes.

Creating a Community Effort
As part of the DoD/DHS SwA working
groups and the NIST SAMATE project,
MITRE fostered the creation of a commu-
nity of partners from industry, academia,
and government to develop, review, use,
and support a common weaknesses dictio-
nary that can be used by those looking for
weaknesses in code, design, or architecture
as well as those teaching and training soft-
ware developers about the code, design, or
architecture weaknesses that they should
avoid due to the security problems they can
have on applications, systems, and net-
works. The effort is called the Common
Weakness Enumeration (CWE) initiative.
The work from PLOVER became the
major source of content for draft one of
the CWE dictionary.

An important element of the CWE
initiative is to be transparent to all on what
we are doing, how we are doing it, and
what we are using to develop the CWE

Being Explicit About Security Weaknesses
Robert A. Martin

MITRE Corporation

Software acquirers want assurance that the products they are obtaining are reviewed for known types of security weaknesses.
Acquisition groups in large government and private organizations are beginning to use such reviews as part of future con-
tracts, but the tools and services for performing them are new and, until recently, there was no nomenclature, taxonomy, or
standard to define their capabilities and coverage. A standard dictionary of software security weaknesses has been created by
the community to serve as a unifying language of discourse and as a measuring stick for comparing tools and services.

Being Explicit About Security Weaknesses

dictionary. We believe this transparency is
important during the initial creation of the
CWE dictionary so that all of the partici-
pants in the CWE community are com-
fortable with the end result and will not be
hesitant about incorporating CWE into
what they do. Figure 1 shows the overall
CWE context and community involve-
ment of the effort. We believe the trans-
parency should also be available to partic-
ipants and users that will visit after the ini-
tial CWE dictionary is available on the
CWE Web site [7]; all of the publicly avail-
able source content is being hosted on the
site for anyone to review or use for their
own research and analysis.

Currently, more than 41 organizations,
shown in Table 1 (see page 6), are partici-
pating in the creation and population of
the CWE dictionary.

Kick-Starting a Dictionary
To continue the creation of the CWE dic-
tionary, we brought together as much pub-
lic content as possible using the following
three primary sources:
• The PLOVER collection [6] that iden-

tified more than 300 weakness types
created by determining the root issues
behind 1,500 of the vulnerabilities in

the CVE List [4].
• The Comprehensive, Lightweight

Application Security Process (CLASP)
from Secure Software, which yielded
more than 90 weakness concepts [8].

• The issues contained in Fortify’s Seven
Pernicious Kingdoms papers, which con-
tributed more than 110 weakness con-
cepts [9].
Working from these collections as well

as those contained in the 13 other publicly
available information sources listed on the
CWE Web site sources page, we developed
the first draft of the CWE list, which
entailed almost 500 separate weaknesses.
It took approximately six months to move
from what we created in PLOVER to the
first draft of CWE. The CWE content is
captured in an XML document and fol-
lows the CWE schema. Two months later,
we updated CWE to draft 2 with the
incorporation of changes that included
cleaning up the names of items, reworking
the structure, and filling in the descriptive
details for many more of the items. The
first change to the CWE schema came
about with the addition of language and
platform ties for weaknesses and the addi-
tion of specific CWE identifications for
each weakness.

Covering What Tools Find
While the third draft of CWE continued
expanding the descriptions and improving
the consistency and linkages, subsequent
drafts will incorporate the specific details
and descriptions of the 16 organizations
that have agreed to contribute their intel-
lectual property to the CWE initiative.
Under non-disclosure agreements with
MITRE, which allow the merged collec-
tion of their individual contributions to be
publicly shared in the CWE List,
Application Security Consortium, Cenzec,
Core Security, Coverity, Fortify,
Interoperability Clearinghouse, Klocwork,
Ounce Labs, Parasoft, proServices
Corporation, Secure Software, Security
Innovation Inc., SofCheck, SPI Dynamics,
Veracode, and Watchfire are all contribut-
ing their knowledge and experience to
building out the CWE dictionary. Draft 4
is the first draft version to include details
from this set of information sources.

Draft 5 of CWE encompasses more
than 600 nodes with specific details and
examples of weaknesses for many of the
entries. Figure 2 shows the transition from
PLOVER to CWE drafts 1-5 and the con-
tent structure changes that occurred dur-
ing the revisions. While the initial transi-

March 2007 www.stsc.hill.af.mil 5

Table 1: The Common

Weakness Enumeration

Community

• AppSIC, LLC.
• Aspect Security
• Cenzic, Inc.
• Center for Education and Research in
 Information Assurance and Security/
 Purdue University
• Computer Emergency Response Team/
 Coordination Center (CERT/CC)
• Cigital, Inc.
• Code Scan Labs
• Core Security Technologies
• Coverity, Inc.
• Fortify Software, Inc.
• IBM
• Interoperability Clearing House
• James Madison University
• Johns Hopkins University Applied
 Physics Laboratory
• KDM Analytics
• Kestrel Technology
• Klocwork, Inc.
•

• MITRE Corporation
• NIST
• National Security Agency (NSA)
• North Carolina State University
• OMG
• Open Web Application Security Project
 (OWASP)
• Oracle Corporation
• Ounce Labs, Inc.
• Palamida
• Parasoft Corporation
• proServices Corporation
• Secure Software, Inc.
• Security Innovation, Inc.
• Security University
• Semantic Designs, Inc.
• SofCheck, Inc.
• SPI Dynamics, Inc.
• Unisys
• VERACODE
• Watchfire Corporation
•

• call and count the same

• enable metrics

CWE

Dictionary

Figure 1: The CWE Effort’s Context and Community

Software Security

tion from PLOVER to CWE took six
months, each subsequent updated draft
has occurred on a bimonthly basis.

In addition to the sources supplying spe-
cific knowledge from tools or analysts, we
are also leveraging the work, ideas, and con-
tributions of researchers at Carnegie
Mellon’s CERT/CC, IBM, KDM Analytics,
Kestrel Technology, MIT’s Lincoln Labs,
North Carolina State University, Oracle, the
OWASP, Security Institute, Unisys, the
WASC, Whitehat Security, and any other
interested parties that wish to contribute.

The merging and combining of the con-
tributed materials is being incorporated into

several of drafts of CWE (draft 6 in
February, 2007 and draft 7 in May, 2007),
which will be available for open community
comments and refinement as CWE moves
forward. A major part of the future work will
be refining and defining the required attrib-
utes of CWE elements into a more formal
schema defining the metadata structure nec-
essary to support the various uses of CWE
dictionary. Figure 3 shows a sample of the
descriptive content of an entry from CWE
draft 5. This example is for the Double Free
weakness, CWE identification (ID) 415.

However, the CWE schema will also
be driven by the need to align with and

support the SAMATE and OMG SwA
SIG efforts that are developing software
metrics, software security tool metrics, the
software security tool survey, the method-
ology for validating software security tool
claims, and reference datasets for testing.

For example, a major aspect of the
SAMATE project is the development and
open sharing of test applications that have
been salted with known weaknesses so
that those wishing to see how effective a
particular tool or technique is in finding
that type of weakness will have test mate-
rials readily available. These test sets are
referred to as the SAMATE test reference
datasets (TRDs). NIST has chosen to
organize the SAMATE TRDs by CWE
weakness type and will also include vary-
ing levels of complexity, as appropriate to
each type of weakness, so that tools that
are more or less effective in finding com-
plex examples of a particular CWE weak-
ness can be identified. Correct constructs
that are closely aligned to the CWEs but
are correct implementations will also be
included in the TRDs to help identify the
false-positive effectiveness of the tools.
Adding complexity descriptions to the
CWE schema will allow SAMATE and
CWE to continue to support each other.

The OMG’s SwA SIG, which is using
CWEs as one type of software issue that
tools will need to be able to locate within
the eventual OMG SwA technology
approach, needs more formal descriptions
of the weaknesses in CWE to allow their
technological approaches to apply. OMG’s
planned approach for this is the use of
their Semantics of Business Vocabulary
and Rules (SBVR) language to articulate
formal language expressions of the differ-
ent CWEs. The CWE schema will have to
be enhanced to allow SBVR expressions
of each CWE to be included. The CWE
will house the official version of the
SBVR expression of that CWE.

The CWE dictionary content is already
provided in several formats and will have
additional formats and views added into its
contents as the initiative proceeds.
Currently one of the ways for viewing
CWE is through the CWE content page
that contains an expanding/ contracting
hierarchical taxonometric view while another
is through an alphabetic dictionary. The
end items in the hierarchical view are
hyperlinked to their respective dictionary
entries. Graphical depictions of CWE
content, as well as the contributing
sources, are also available. Finally, the
XML and XML Schema Definition (XSD)
for CWE are provided for those who wish

6 CROSSTALK The Journal of Defense Software Engineering March 2007

PLOVER CWE

draft 1

CWE

draft 2

CWE

draft 3

CWE

draft 4

CWE

draft 5

PLOVER
+

publicly
available

vulnerability
taxonomy
content

CWE
draft 1

+
name

clean up
and

description
expansion

CWE
draft 2

+
definition

expansion
of 150
items,

language/
platform ties
added and
CWE-IDs
assigned

CWE
draft 3

+
50 new

items added,
definitions

expansion of
100 items,

name changes,
and structure
adjusted for
new content

CWE
draft 4

+
45 new

items added,
definitions

expansion of
100 items

Aug 2005 Mar 2006 May 2006 Jul 2006 Sep 2006 Dec 2006

Figure 2: From PLOVER to CWE, Drafts 1-5

Table 1: The Common

Weakness Enumeration

Community

• AppSIC, LLC.
• Aspect Security
• Cenzic, Inc.
• Center for Education and Research in
 Information Assurance and Security/
 Purdue University
• Computer Emergency Response Team/
 Coordination Center (CERT/CC)
• Cigital, Inc.
• Code Scan Labs
• Core Security Technologies
• Coverity, Inc.
• Fortify Software, Inc.
• IBM
• Interoperability Clearing House
• James Madison University
• Johns Hopkins University Applied
 Physics Laboratory
• KDM Analytics
• Kestrel Technology
• Klocwork, Inc.
• Microsoft Corporation
• Massachusets Institute of
 Technology Lincoln Labs

• MITRE Corporation
• NIST
• National Security Agency (NSA)
• North Carolina State University
• OMG
• Open Web Application Security Project
 (OWASP)
• Oracle Corporation
• Ounce Labs, Inc.
• Palamida
• Parasoft Corporation
• proServices Corporation
• Secure Software, Inc.
• Security Innovation, Inc.
• Security University
• Semantic Designs, Inc.
• SofCheck, Inc.
• SPI Dynamics, Inc.
• Unisys
• VERACODE
• Watchfire Corporation
• Web Application Security Consortium
 (WASC)
• Whitehat Security, Inc.

Table 1: The CWE Community

® CERT is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Being Explicit About Security Weaknesses

to do their own analysis/review with other
tools. Dot notation representations, a stan-
dard method for encoding graphical plots
of information, will be added in the future.

Finally, a process to acknowledge capa-
bilities that incorporate CWEs has been
established. This CWE Compatibility and
CWE Effectiveness program is similar to
the certification and branding program
used by the CVE effort but has two distinct
parts, compatibility and effectiveness. The
basic stages of the compatibility program
are a formalized process for capability
owners to publicly declare their use of
CWEs and a public documentation of how
their capability fulfills the requirements for
finding those CWEs. The effectiveness
program, which only applies to assessment
capabilities, consists of a public declaration
about which CWEs a capability covers and
collection of publicly available test results,
showing how effective the capability is in
finding those CWEs.

Additional Impact and
Transition Opportunities
Tied to CWE
The establishment of the CWE effort is
yielding consequences of the following
three types: direct impact and value, align-
ment with and support of other existing
efforts, and enablement of new follow-on
efforts to provide value that is not cur-
rently being pursued.

The direct impacts include the follow-
ing:
• Providing a common language of dis-

course for discussing, finding, and
dealing with the causes of software
security vulnerabilities as they are man-
ifested in code, design, or architecture.

• Allowing purchasers to compare, eval-
uate, and select software security tools
and services that are most appropriate
to their needs – including having some
level of assurance of the assortment
of CWEs that a given tool would find.
Software purchasers will be able to
compare coverage of tool and service
offerings against the list of CWEs and
the programming languages that are
used in the software they are acquiring.

• Enabling the verification of coverage
claims made by software security tool
vendors and service providers (this is
supported through CWE metadata
and alignment with the SAMATE ref-
erence dataset).

• Enabling government and industry to
leverage this standardization in their
acquisition contractual terms and con-
ditions.

There will also be a variety of alignment

opportunities where other security-related
efforts and CWE can leverage each other to
the benefit of both. Examples of the syner-
gies that are possible include the following:
• Mapping of CWEs to CVEs that would

help bridge the gap between the potential
sources of vulnerabilities and examples
of their observed instances providing
concrete information for better under-
standing the CWEs and providing some
validation of the CWEs themselves.

• Creating a validation framework for
tool/service vendor claims, whether
used by the purchasers themselves or
through a third-party validation ser-
vice, would be able to heavily leverage
the common weaknesses dictionary as
its basis of analysis. To support this,
the community would need to define
the mechanisms used to exploit the
various CWEs for the purposes of
helping to clarify the CWE groupings

and come up with verification methods
for validating the effectiveness of tools
to identify the presence of CWEs in
code. The effectiveness of these test
approaches could be explored with the
goal of identifying a method or meth-
ods that are effective and economical
to apply to the validation process.

• Establishing a bi-directional alignment
between the common weaknesses enu-
meration and the SAMATE metrics
effort.

• Using the SAMATE software security
tool and services survey effort to
leverage this common weaknesses dic-
tionary as part of the capability frame-
work to effectively and unambiguously
describe various tools and services in a
consistent apples-to-apples fashion.

• Mapping between the CWEs and the
common attack pattern enumeration
and characterization effort that would

March 2007 www.stsc.hill.af.mil 7

Double Free

CWE ID 415

Description Calling free() twice on the same memory address can lead to a buffer overflow.

Likelihood of Exploit Low to Medium

Common Consequences Access control: Doubly freeing memory may result in a write-whatwhere condition,

allowing an attacker to execute arbitrary code.

Potential Mitigations Implementation: Ensure that each allocation is freed only once. After freeing a chunk,

set the pointer to NULL to ensure the pointer cannot be freed again. In complicated

error conditions, be sure that clean-up routines respect the state of allocation properly.

If the language is object oriented, ensure that object destructors delete each chunk of

memory only once.

Demonstrative Example 1: The following code shows a simple example of a double free vulnerability.

Examples

char* ptr = (char*)malloc (SIZE);

...

 free(buf2R1);

free(buf1R2);

}

Observed Examples CAN-2004-0642 - Double-free resultant from certain error conditions.

CAN-2004-0772 - Double-free resultant from certain error conditions.

CAN-2005-1689 - Double-free resultant from certain error conditions.

CAN-2003-0545 - Double-free from invalid ASN.1 encoding.

CAN-2003-1048 - Double-free from malformed GIF.

CAN-2005-0891 - Double-free from malformed GIF.

CVE-2002-0059 - Double-free from malformed compressed data.

Context Notes This is usually resultant from another Weakness, such as an unhandled error or race

condition between threads. It could also be primary to Weaknesses such as buffer

overflows.

Also a Consequence.

When a program calls free() twice with the same argument, the program's memory

management data structures become corrupted. This corruption can cause the

program to crash or, in some circumstances, cause two later calls to malloc() to return

the same pointer. If malloc() returns the same value twice and the program later

gives the attacker control over the data that is written into this doubly-allocated

memory, the program becomes vulnerable to a buffer overflow attack.

Node Relationships Child Of - Resource Management Errors (399)

Peer - Use After Free (416)

Peer - Write-what-where condition (123)

Parent Of - Signal handler race condition (364)

Source Taxonomies PLOVER - DFREE - Double-Free Vulnerability

7 Pernicious Kingdoms - Double Free

CLASP - Doubly freeing memory

Applicable Platforms C

C++

Figure 3: Entry for CWE-ID 415, Double Free Weakness

Software Security

provide the users of these resources
the ability to quickly identify the par-
ticular weaknesses that are targeted by
various types of attacks and to better
understand the context of individual
weaknesses through understanding
how they would typically be targeted
for exploitation. In combination, these
two resources offer significantly higher
value than either does on its own.

• Bi-directional mapping between CWEs
and coding rules, such as those
deployed as part of the DHS NCSD
BuildSecurityIn Web site [10], would be
used by tools and in manual code
inspections to identify common weak-
nesses in software.

• Incorporating CWE into the DHS
NCSD SwA common body of knowl-
edge, hosted on the BuildSecurityIn
Web site.

• Leveraging of the OMG technologies to
articulate formal, machine-parsable def-
initions of the CWEs to support analy-
sis of applications within the OMG
standards-based tools and models.

Finally, there are two follow-on opportu-
nities that are currently not being pursued
but could provide significant added value
to the software security industry:
• Expansion of the coding rules catalog

on the DHS BuildSecurityIn Web site to
include full mapping against the CWEs
for all relevant technical domains.

• Identification and definition of specif-
ic domains (language, platform, func-
tionality, etc.) and relevant protection
profiles based on coverage of CWEs.
These domains and profiles could pro-
vide a valuable tool to security testing
strategy and planning efforts.

Conclusion
This work is already helping to shape and
mature the code security assessment
industry, and it promises to dramatically
accelerate the use and utility of automa-
tion-based assessment capabilities for
organizations and the software systems
they acquire, develop, and use.u

Acknowledgments
The work contained in this paper was fund-
ed by DHS NCSD and is based on the
efforts of a large number of individuals, but
special thanks is made for the contributions
of Steve Christey, Janis Kenderdine, Conor
Harris, David Harris, and Sean Barnum.

References
1. NIST. “The Software Assurance Met-

rics and Tool Evaluation (SAMATE)
Project.” Jan. 2007 <http://samate.
nist.gov>.

2. OMG. Object Management Group.
Jan. 2007 <http://swa.omg.org>.

3. Concurrent Technologies Corpora-
tion. The Code Assessment Method-
ology Project. Jan. 2007 <www.ctc.com>.

4. MITRE Corporation. The Common
Vulnerabilities and Exposures (CVE)
Initiative. Jan. 2007 <http://cve.
mitre.org>.

5. NIST. National Vulnerability Database.
Jan. 2007 <http://nvd.nist.gov>.

6. MITRE Corporation. The Preliminary
List of Vulnerability Examples for
Researchers. Dec. 2006 <http://cve.
mitre.org/docs/plover/>.

7. MITRE Corporation. The Common
Weakness Enumeration Initiative
<http://cwe.mitre.org>.

8. Viega, J. The CLASP Application
Security Process. Secure Software, Inc.,
2005 <www.securesoftware.com>.

9. McGraw, G., B. Chess, and K. Tsipen-
yuk. “Seven Pernicious Kingdoms: A
Taxonomy of Software Security Err-
ors.” NIST Workshop on Software Se-
curity Assurance Tools, Techniques, and
Metrics, Long Beach, CA, Nov. 2005.

10. DHS NCSD. BuildSecurityIn. Dec.
2006 <http://buildsecurityin.us-cert.
gov>.

8 CROSSTALK The Journal of Defense Software Engineering March 2007

About the Author

Robert A. Martin is a
principal engineer in
MITRE’s Information
and Computing Technol-
ogies Division. For the
past seven years, his

efforts have been focused on the inter-
play of risk management, cyber security
standards, critical infrastructure protec-
tion, and the use of software-based tech-
nologies and services. Martin is a mem-
ber of the Association for Computing
Machinery, Armed Forces Communica-
tions and Electronics Association,
Institute of Electrical and Electronics
Engineers (IEEE), and the IEEE
Computer Society. He has a bachelor’s
degree and a master’s degree in electrical
engineering from Rensselaer Polytechnic
Institute, and a master’s of business
degree from Babson College.

MITRE Corporation
202 Burlington RD
Bedford, MA 01730-1420
Phone: (781) 271-3001
Fax: (781) 271-8500
E-mail: ramartin@mitre.org

COMING EVENTS

April 3-5
SAS Expo 2007
Sea-Air-Space

Washington D.C.
www.sasexpo.org/2007

April 4-5
EIG 2007

Excellence in Government 2007
Washington D.C.

www2.govexec.com/EIG2007

April 4-6
ICCSA 2007

5th International Conference on
Computer Science and Applications

San Diego, CA
www.conferencehome.com/iccsa.htm

April 22-26
2nd Annual Functional Sizing Summit

Vancouver, BC, Canada
www.ifpug.org/conferences

/annual.htm

April 22-26
North American CACS

North American Computer, Audit,
Control and Security Conference

Grapevine, TX
www.isaca.org

April 23-26
NMDAS 2007

The 2007 Nano Materials for Defense
Application Symposium

San Diego, CA
www.usasymposium.com

June 18-21
2007 Systems and Software

Technology Conference

Tampa Bay, FL
www.sstc-online.org

COMING EVENTS: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. E-mail announce-
ments to nicole.kentta@hill.af.mil.

